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ABSTRACT

A friction limit moment (torque) is derived for a one-bolt, two-member struc-
tural joint. Once the structural load reaches the limit moment, the frictional re-
sistance in the joint is overcome and relative rotation of the structural members
can occur. A framework based on the kinematical approach of limit analysis is
proposed to calculate the limit torque. While only the simple case of calculations
is presented in this paper, more complex joints can be analyzed using the approach
proposed. The friction limit loads derived using this approach can be represented
as a surface in a generalized stress space, analogously to the yield condition of
plasticity. Upon the structural load reaching the threshold (limit) friction load, the
process of relative movement of structural elements (rotation and translation} be-
comes possible until the joint locks up due to structural constraints. Results have
application in analysis of structures with gaps in their joints, particularly struc-

*Communicated by M. Save

499
Copyright © 1996 by Marcel Dekker, Inc.




506 MICHALOWSKI AND GAWECKI

tures with deliberately introduced gaps. The response of such structures to loads
can differ significantly from those where gaps are not present, and some benefits
can be gained, e.g., an increase in the range of the elastic response. Application
also can be envisioned in systems that are required to dissipate energy.

I. INTRODUCTION

The problem considered here has practical implications for mechanical systems
where frictional joints are used to arrange the members in particular positions. Such
systems are used, €.g., in robotics, the simplest example of which is a muiti-arm
extension lamp. Priction effects also can be used in structural joints to dissipate
energy when the structure is subjected to dynamic loads. The main motivation here
is to develop an engineering technique that makes it possible to include frictional
effects in structural systems with “slackened” connections. In recent years quasi-
static load processes of frictionless slackened structures have been considered by
Gawecki [1, 2]. This paper relates to structural systems with gaps, and aims toward
the description of the irreversible behavior of such systems.

The relative motion in joints with gaps has a complex kinematics which, in most
cases, can be decomposed into two fundamental components, rigid translation and
rotation. Whereas rigid translation is relatively simple to analyze when Amontons-
Coulomb friction is involved, the rotation mode appears to be complicated. The
limit torque cannot be determined without consideration of the distribution of the
interfacial pressure or without utilizing the kinematical theorem of limit analysis
as applied to dry friction.

This paper considers a joint with a freedom of rotation inhibited by frictional
interaction. An ideal model of a joint is considered, where the structural connec-
tion contains two circular collar plates linked by a single bolt, as shown in Fig. 1.
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Fig. 1 A simple joint with freedom of rotation inhibited by friction.
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Rotation is allowed about the bolt with the frictional resistance induced on the in-
terface between the plates. Fundamental relations are reviewed in the next section,
followed by an analysis of the collapse of the perfect joint model. Application of
the results to more complex multi-bolt connections is then indicated, after which
the paper is summarized with some final remarks.

Il. DESCRIPTION OF DRY FRICTION IN TERMS OF PLASTICITY
THEORY

The simple dry friction (Amontons-Coulomb) condition is considered between
metal plates of a joint with the limit shear force P, proportional to the normal load
P, (compression is defined positive) as

f(PLPYy=|P|—uP, =0 (H

where u is the friction coefficient, as shown in Fig. 2. The rate of relative displace-
ment [#]; is assumed to be governed by the normality rule
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where P, is the force vector with components P, and P,, and A is a nonnegative
multiplier. Such a rule, in conjunction with frictional problems, was suggested
earlier by Mrdz and Drescher [3], Collins [4], and Michalowski and Mréz [5].

It can be argued that the kinematics of mechanical systems with frictional in-
terfaces derived from the normality (or associative) rule of Eq. 2 is not realistic,
since it predicts a velocity component normal to the friction-sliding interface (see
Fig. 2). The assumption of normality is discussed here in some detail.

The controversy of using the normality rule arises in the mechanics of frictional
materials (such as granular media), where dilatancy occurs during deformation,

R Lol
{ul.
. P
[N A }
- P, 1]
\\ n n
\

Fig. 2 Dry friction condition.
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but at a lesser rate than that suggested by the normality rule. The non-associativity
of deformation of granular materials has an effect on solutions to boundary-value
problems. It can be clearly shown that the traction vector on a rupture layer within
a frictional {granular) material conforms to the friction condition (Mohr-Coulomb
criterion) only when deformation is governed by the normality rule. In keeping
with the non-associative flow law, the traction on a rupture sarface (velocity dis-
continuity) does not satisfy the friction condition.

An analogy can be suggested between a rupture surface within a granular ma-
terial and a solid surface with dry friction. It may be noted, however, that such an
analogy holds only when the normality rule is enforced for both. In the case of the
non-associative rule, the traction on a rupture surface within a frictional material
Is no longer inclined at the angle of internal friction to the normal of that surface,
whereas traction on a solid frictional surface is independent of the sliding rule.

The consequence of the last statement is that the solution to a problem involving
solid surface friction must be independent of the particular sliding law, whereas the
flow rule does affect the solution for a material with internal {friction. Indeed, by the
principle of virtual work, the limit force in a boundary-value problem involving dry
friction must be independent of the specific motion rule. It is convenient, however,
to use the associative rule since, for the dry friction condition (see Fig. 2), normality
leads to a zero rate of energy dissipation. Otherwise, the distribution of the contact
stress must be known in order to calculate the energy dissipation rate.

In conclusion, even though the associative flow rule (sliding rule) may not
be physically reasonable, its application is fully justifiable in solving mechanics
problems with solid surface friction.

The upper bound theorem of limit analysis will be used in the next section
to calculate estimates of the limit generalized forces (moment and normal force)
applied to a frictional joint with a limited freedom of rotation. This theorem states
that in any kinematically admissible mechanism the rate of energy dissipation is
not less than the rate of work of the externally applied load (see, e.g., Ref. 6).
Denoting the kinematically admissible strain rate by éf;-, this theorem takes the
form

fo'ljéi'dv 2] TiurdSu (3)
v N

"

where g;; is the stress tensor associated with the admissible kinematics, V is the
volume of deforming material, §,, is the boundary where velocity u; is given, and
the surface traction 7, is unknown. Note that in structural systems with friction,
the term on the left side of the inequality given by Eq. 3 must include the rate of
dissipation on frictional interfaces.
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lll. FRICTION TORQUE FOR AN IDEAL JOINT

The collapse criterion of a frictional joint with a single bolt is derived in this
section. The joint is considered to collapse when the structural elements start to
rotate with respect to one another. Three different procedures to calculate the
limit torque, based on the kinematical approach of limit analysis, are employed.
These procedures differ in the assumed kinematics associated with the frictional
rotation of the joint. In these three cases, the collar plates are considered as elastic,
perfectly plastic, and rigid, respectively, In each case, the upper bound theorem of
limit analysis is used to find the limit torque. In addition, an approximate solution
based on an assumption of uniform distribution of stress between the plates is
shown.

An ideal two-member connection is considered, as shown in Fig. 1. Resistance
to rotation comes from friction on the interface between the two collar plates. A
“sandwich” connection with multiple plates will not be considered, but the analysis
can easily be extended to such a case. The major idealization of the joint lies in
neglecting the stiffness of the bolt nut and in neglecting the torsion of the bolt (or
frictional resistance between the nut and the collar) during the incipient rotation.

First, the connection plates are considered as thin elastic plates, and the con-
tact pressure between them is calculated according to the theory of elasticity [7].
The circular plates are compressed together with a bolt by force N, as shown
in Fig. 3(a). The collapse of the joint is associated with the relative rotation of
the collar plates. Equation 3 is used to calculate the collapse torque. However, in
order to calculate the energy dissipation rate on the left side of the inequality of
Eq. 3, the distribution of the interface pressure must be known. This distribution
is calculated, first considering the joint as two thin circular elastic plates of radius
R with an opening of radius r,, subjected to a deformation mode consistent with
the normatlity rule in Eq. 2. The latter requires the sliding velocity vector on the
interface to be inclined at the angle of friction to that interface at each point. The
deformed platens must then assume conical shapes such that the ratio of separation

() (b)

Fig.3 A thin collar plate: (a} Conical deformation; (b) Distribution of contact pressure.
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distance w(r) to the relative tangential sliding is equal to the coefficient of friction
i (see Fig. 3(a)).
The equation for the elastic deflection of an axisymmetric thin plate is

dw  2dw  1dw  ldw ¢ 2
T TR TR e T D (
where w is deflection of the plate, g is contact pressure, and D is plate stiffness
(D = Eh*/12(1 — v?), E and v are Young’s modulus and Poisson’s ratio, respec-
tively, and /i is plate thickness). A small deflection of the plate compatible with
the normality rule of relative [rictional sliding is described as

w(r) = peor (5)
where o is a small angle of rotation. The plate is supported at the internal cir-
cumference r;; by total reaction &; hence the shear force at r, must be equal to
@ = N/2mr,. The shear force can be expressed as

dw 14w 1dw
) ()

+Y = _D — et ettt s oo e
o) (dr3 + rdrr R dr
Utilizing Eqs. 4-6 and noting that O = N /2mr, at ry, relations for the distribution
of the contact pressure ¢(r) and the shear force Q(r) are obtained as

~_ Nrg N Nrg
q(r) = T3 Q@)= pr— )]

The distribution of the contact pressure is shown in Fig. 3(b). Note that the shear
force { at the outer edge » = R is not equal to zero, and needs to be counterbal-
anced with a contact force distributed along the outer perimeter, T = @Q(R). This
force needs to be accounted for later, in addition to contact pressure g(r), when
calculating energy dissipation during frictional sliding. Moreover, nonzero bend-
ing moments appear at 1 = r, and r = R. This is a consequence of the assumed
conical deformation mode of the plates used here.

Having derived the equation that describes the distribution of normal contact
pressure g (r) and Q(R), Eq. 3 is used to find the upper bound to collapse torsional
moment MJr about the connection bolt. Calculations can be performed using two
different modes of deformation, one consistent with the normality rule (also used to
derive the contact stress distribution), and the other an instantaneous mode, where
the relative rotation of the two parts of the joint occurs without any separation
component {non-associative motion rule). Both lead to identical solutions for the
limit fictional moment M, . Using the associative rule, the energy dissipation rate
during relative rotation is equal to zero, but the effect of contact stresses and force
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T at ¥ = R on the separation velocity must be accounted for. In the second case,
no separaticn velocity is allowed. Thus, the contact stresses and T do no work, but
the energy dissipation rate is now nonzero. Consequently, both mechanisms lead
to the same limit moment M. The latter is used here.

The left side of the inequality given by Eq. 3 represents the rate of energy
dissipation, and, for the frictional mechanism considered, can be written as

D=po f g(rirdS + pw2r R2Q(R) (8)
S

where § is the area of the contact surface and @ is the rate of relative rotation of
the two structural members (see Fig. 1) with respect to one another. The first term
in Eq. 8 represents the dissipation rate over the contact surface, and the second
term is due to the force distributed along the outer circumference of the mnterface
of the connection plates. Realistically, if frictional sliding occurs only between the
connection plates, a bolt holding the joint together is being twisted. The disstpation
due to the torsion of the bolt is, however, neglected here.

The term on the right side of Eq. 3 is equal to the product of the unkown coliapse
torque M; and the rate of rotation w, plus the normal force (compression force)
times the separation rate of the two parts of the joint. Since in the instantaneous
mechanism considered the separation rate is zero, the compression force (the axial
force in the bolt) does no work during rotation, and the rate of work of external
forces W is

W= M 9

The upper bound of torque M, can be found by requiring that D = W (see Eq. 3),
and it can be represented in a dimensionless form as

M - R

7 Fo

— =u—t1+In— 10
NR MR( +nr0) (10)

Frictional sliding without a separation component does not conform to the nor-
mality rute. However, as mentioned earlier, such a mechanism leads to a solution
to the limit load identical with that based on the associative rule. This comes from
the fact that the inequality of Eq. 3 has a structure identical to the principle of vir-
tual work, which leads to a static equilibrium solution independent of the specific
flow rule. The only disputable point is the use of the stress distribution obtained
from the elasticity solution for a thin plate. At the very least, however, Eq. 101s a
reasonable approximate solution.

The second mechanism of fatlure is depicted in Fig. 4(a). Collapse of the joint
occurs here due to plastic failure of the two circular plates. The two plates of the



.

506 MICHALOWSKI AND GAWECKI
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Fig. 4 (a) Yicld-finc pattern for a collar plate; (b) Velocity hodograph.

connection model adhere to one another, and a kinematically admissible incipient
mechanism with relative rotation and axisymmetrical separation is considered
where the vector of relative motion at each point of the interface is inclined at an
angle of friction §(tand = ) to that interface. The kinematics here is identical
to that used earlier to calculate the elastic distribution of the contact pressure,
but this time the plate is considered to have reached the plastic state (yielding).
Such relative motion conforms to the normality rule in Eq. 2. The consequence of
such kinematics is that the energy dissipation rate due to frictional sliding becomes
zero, since the interfacial stress vector and the relative velocity vector are mutually
perpendicular at each point of the interface.

A finite displacement with a separation component between the two parts of the
connection subjected to rotation is not realistic, but an incipient mechanism of that
kind is kinematically admissible, and can be used in conjunction with the upper
bound thecrem of limit analysis (for other applications of a similar concept see,
e.g., Ref. 4).

In the collapse mechanism considered now, the energy is dissipated within the
deforming plates, and is calculated using the yield line theory. Due to the symmetry
of the connection model, dissipation is calculated for one plate subjected to a
conical deformation (identical to the one shown in Fig. 3(a)). To calculate the
energy dissipation rate, the plate is divided into » sectors, as shown in Fig. 4(a),
separated by the yield lines. The hodograph in Fig. 4(b) represents the rates of
rotation of the plate segments and the rates of relative rotations along the yield
lines. In the particular case shown, n = 8. Assuming the rate of rotation of a single
sector about the outer edge to be §, and using the geometrical relation in Fig. 4(b),
the rate of relative rotation along the yield lines ¢ can be calculated as

é = 26 sin an
ft

and the rate of energy dissipation along all the yield lines becomes

D = 2n(R — ry)Mf sin — (12)
H
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where M, is the plastic moment of the plate (per unit length). The deformation of
the plate tends to the continual deformation mode whenn — oo, In limitn — o0,
the dissipation rate in Eq. 12 becomes

D =218(R — r)M, (13)

where § = pe for the mechanism considered, and @ is the rate of rotation of the
two structural members (Fig. 1) with respect to one another. The rate of work of
external forces is

W = Mo — Npuar, (14)

where N is the joint compression force. The minus sign in Eq. 14 results from the
fact that force N acts opposite to the separation velocity pwwr, (compressive force
is positive, consistent with Eq. ). For as long as the same relative motion of the
two plates is considered (here, expressed by the normality rule in Eq. 2), both D
and W are expressed by Eq. 13 and Eq. 14, no matter whether the deformation
mechanism includes yielding of both plates or yielding is localized to one plate.
By equating the dissipation rate in Eq. 13 to the rate of external work in Eq. 14,
the following expression is obtained for the limit torque in the joint:

M M r ¥

f 0 0 0
L (220 (1 - —) o {5
NR ( TN r) T R) (13)
The joint is held together by the bolt with a compression nut of radius slightly larger
than ;. Thus, additional energy dissipation may occur due to plastic rotation of

the plate along the perimeter of the compression nut. This dissipation rate is equal
to

D, =2mr M, = 2nropoM, (16)

If this dissipation is included in the entire energy balance, the limit torque becomes

M M r

f 0 o
—L (224 L 17
NR ( N R) t7n

The moment in Eq. 17 will, of course, always be larger than that in Eq. 15.

The third mechanism of the collapse can be conceived when the plastic stiffness
of the connection plates increases significantly, and the two plates separate as rigid
bodies. The entire force N must now be distributed along the outer perimeter R,
since the normality rule indicates that the contact stresses for ry < r < R are
zero {singular point O on the Amontons-Coulomb friction condition; see Fig. 2).
Consequently, the limit torque hecomes

—L =p (18)
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For reasonable r,/R, Eq. 18 significantly overestimates the limit torque with re-
spect to previous solutions.

The last solution to the limit torque is based on the assumption that the stress
between the plates of the joint is distributed uniformly (this is a standard assumption
made in calculations of the threshold moment in nonlubricated thrust bearings).
Consequently, for circular connection plates, the moment can be integrated to yield

w2 [ ()

5 R
=l 19
M[+l+%] (19

RN 3

This is an approximate solution, which cannot be interpreted as an upper bound to
the limit torgue.

IV. DISCUSSION OF RESULTS FOR THE IDEAL TWO-MEMBER
CONNECTION

The results presented here are theoretical. No experimental tests are available
to validate these solutions.

The functions in Egs. 10, 15, and 19 are shown in Fig. Sintherange 0 < ry/R <
1. Physical constraints require that r,/ R be larger than zero and smaller than one.
Based on the interface pressure distribution given by the theory of thin plates,
frictional resistance to rotation of an ideal joint (with thin collar plates; Fig. 1(b))
is very low when the radius of the opening in the joint r is small compared to the
diameter of the collar plates R. It increases rapidly, however, with an increase in
ro/ R. This dependence is nonlinear, and the friction torque expressed as M /N R

3
M o,
F N
2 M _oos
My N
NR Eq. 19
1 Eq. 15
| Eq. 10 U =03
0 1 1 1 1 1 1 L 1 1
0 2 4 5] 8 1

Fig. 5 Upper bounds (o the limit torque.
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(N is joint compression force; R is outer radius of the collar plates) reaches the
magnitude of the friction coefficient y when rg/R = 1.

If the plastic moment of the collar plates M, is low, the frictional torque calcu-
lated from the mechanism that includes plastic yielding of the collar plates (Eq. 15)
will be lower than that based on the stress distribution from the theary of thin plates.
For example, when p = 0.3 and the plastic moment My/N = 0.05, the mechan-
ism based on the plastic yielding of the connection plates gives a lower estimate
of the frictional torque when r;/R > 0.14. Since the calculations are based on
the upper-bound approach of limit analysis, the lower moment is a better estimate
of the true friction torque. The torque can be increased, of course, by increasing
the plastic moment of the plates. For example, when M,/N = 0.1, the plastic
yielding of plates would not be expected to occur until /R > 0.42. For most
realistic connections, the plastic moment M, is quite large and, consequently, the
solution in Eq. 15 gives a high limit torque value.

if the connection plates are thick, the theory of thin plates is no longer applicable
and, according to Eq. 18, M -/ N R will reach the magnitude of 1. The approximate
solution in Eq. 19 yields a limit frictional moment larger than that found using
the flexible plate approach of Eq. 10 when r,/R is less than 0.36, and it falls very
close to the plastic plate solution when the plastic moment M,,/N of the plate is
0.1. Notice that when the plastic moment of the connection plates M, /N increases
beyond 1/27x, the estimate of frictional torque from Eq. 15 will be larger than 1. The
usefulness of these solutions can be questioned, since the limit torque is a function
of the normal force in the bolt, and this force is rarely seen in most structures. Such
Joints, however, may be designed with a known bolt force purposely, e.g., with
the intention to control energy dissipation. Application of such structures can be
envisioned in earthquake-prone regions and space stations (with no gravity field),
for example.

While the joints in traditional metal structures are likely to be relatively rigid,
consideration of loads necessary to overcome frictional resistance may prove useful
for structures where gaps in joints are designed deliberately. Structures with such
clearances in the joints are discussed in the next section.

V. APPLICATION TO SLACKENED CONNECTIONS WITH MULTIPLE
BOLTS

Structural systems with gaps at connections exhibit a peculiar response to ap-
plied loads, particularly when irreversible deformation occurs. Gaps present at
structural joints can originate from long-term service under variable loads or from
manufacturing and construction inaccuracies, or they can be designed deliberately,
e.g., in order to increase the range of elastic response of a structure [2].
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Fig. 6 (a2} Multi-bolt joint with a separate connection plate; (b) Cleasance strain surface.

A model of a realistic joint with gaps is shown in Fig. 6(a). Assume, for sim-
plicity, that the elements of the structure are rigid, and that the only source of
deformation is the gaps at the joints. Two structural members are jointed together
with four bolts, all attached to a connection plate. The change of configuration
of a structural member, e.g., member A, with respect to the connection plate is
described here by generalized strains ¢,, { = 1,2, 3. Because of the gaps between
the bolts and the openings in the structural members, relative movement of the
members and the connection plate is possible to a certain extent. The relative dis-
placements (translation and rotation) are considered here as generalized clearance
strains (¢;). The maximum extent of these displacements is described by the clear-
ance surface in generalized strain space. Such a surface for the element A of the
joint in Fig. 6(a) is presented in Fig. 6(b) (see also Ref, 2), Note that only for
rigid elements are the generalized strains of the members equal to the clearance
strains. For elastoplastic elements, the generalized strains €, have elastic, plastic,
and clearance components.
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Fig.7 (a) Stress-strain behavior of a “slackened” joint in the absence of friction; (b) Response of a
joint with frictional resistance (rigid elements).

In the absence of friction, the stress-strain behavior of a slackened joint has the
shape shown schematically in Fig. 7(a). The symbol o here represents a generalized
stress, e.g., anaxial force or a bending moment in the element at the connection, and
€ is a generalized strain. Segment AB corresponds to the clearance mechanism
{closing of gaps), and segment BC to loading of the nondeformable (locked)
connection.

When the frictional interface between a structural element and the connection
plate is considered, the generalized stress-strain behavior is modified where the
deformation starts at some limit stress op related to friction in the joint (Fig. 7(b)).
Segment BC now corresponds to the frictional slip mode. The fundamental prob-
fem in frictional multiple-bolt connections is evaluation of the generalized stress
o,. This stress function is analogous to the yield condition of plasticity and can
be represented as a surface in the generalized stress space. Such a limit function
was presented in the previous section for a simple one-bolt connection with free-
dom of frictional rotation only. Development of such surfaces for a general case
is complicated, and it wil] be attempted in a subsequent paper. The intent here is
to present a concept that would be useful in analysis of such joints.

VI. FINAL REMARKS

The kinematical approach of limit analysis is a useful tool in deriving limit
conditions of joints with frictional constraints. Irreversible generalized strains in
such joints (relative translation and rotation of members) become possible after
the limit condition is reached. The limit condition describes the combinations of
generalized forces necessary to initiate the process of closing joint gaps until the
joint locks up. This paper is a step toward describing the irreversible behavior of
structural systems with gaps at the joints. Application of the limit analysis approach
to calculation of the threshold moment associated with frictional rotation for a
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simple joint is presented. While derivation of the limit surfaces that describe the
threshold load for closing gaps in more realistic multiple-bolt joints seems to be a
complex task, the framework outlined in this paper is well-suited for the task.
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